Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Vis Exp ; (188)2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36282699

RESUMEN

Dendrochronology, the science of dating tree rings in the wood, defines in which calendar year a particular tree ring was formed. The method can be used to determine the age and authentication of wooden musical instruments. We present a protocol describing how to perform a dendrochronological analysis on stringed instruments and how to interpret the dating. The protocol describes the basic steps in the analysis of top plates, which are usually made of Norway spruce (Picea abies) or, more rarely, silver fir (Abies alba). First, the top plate is carefully inspected, and then the tree ring widths are measured directly on the instrument using high-resolution images. After completing the measurements, a tree ring sequence of the instrument is created, and, in the next step, dating is performed with a number of reference chronologies of the tree species from different geographical areas and instruments. The specialists who date the instruments also invest work in creating reference chronologies. The dendrochronological report provides the dating of an instrument as a calendar year (end date), indicating the year in which the last (most recent) tree ring on the top plate was formed when the tree was still alive. The end date represents the terminus post quem, the year after which the instrument was made or before which it could not have been made. To estimate the year of manufacture, one must consider the time required for wood drying and storing and the number of tree rings removed during wood processing. This protocol is intended to help those commissioning such an analysis to better understand how the analysis is performed and how to interpret the dendrochronological reports in terms of the age, origin, maker, and authenticity of the instrument.


Asunto(s)
Abies , Picea , Madera , Noruega
2.
Front Plant Sci ; 7: 705, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27252721

RESUMEN

Mediterranean tree rings are characterized by intra-annual density fluctuations (IADFs) due to partly climate-driven cambial activity. IADFs are used as structural signals to gain information on relations between environmental conditions and eco-physiological processes during xylogenesis, with intra-annual resolution. To reach an unbiased synchronization of the IADF position within tree rings and seasonal fluctuations in environmental conditions, it is necessary to know the timing of cambial activity and wood formation, which are species- and site-specific processes. We applied the microcoring technique to analyze xylogenesis in Pinus halepensis and Arbutus unedo. To the best of our knowledge, this is the first attempt to study xylogenesis in a hardwood species forming frequent IADFs. Both species co-occur at a site in southern Italy characterized by a Mediterranean climate. To facilitate tree-ring dating and identification of IADFs, we performed traditional dendroecological analysis. We analyzed xylogenesis during summer, which is considered a constraint for xylogenesis and a trigger for IADF formation. We followed the different phases of cell development in the current wood increment with the aim of evaluating whether and which type of IADFs were formed. We additionally analyzed the same phases again in September and in winter to verify the possible formation of IADFs in fall and whether cell production and differentiation was completed by the end of the calendar year. Both species formed the same type of IADFs (earlywood-like cells within latewood), due to temporary growth restoration triggered by rain events during the period of summer drought. At the end of the calendar year, no cells in the phases of enlargement and secondary cell wall deposition occurred. A. unedo was more sensitive than P. halepensis because IADFs were formed earlier in the season and were more frequent in the tree-ring series. The dendro-anatomical approach, combining analysis of tree-ring series and of xylogenesis, helped to detect the period of IADF formation in the two species. Results are discussed in functional terms, highlighting the environmental conditions triggering IADFs, and also in methodological terms, evaluating the applicability of xylogenesis analysis in Mediterranean woods, especially when the formation of IADFs is not uniform around the stem.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...